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The problem of small vibrations of a physical symmetric pendulum about 

the position of relative equilibrium is to be considered. The point of 

support moves close to the surface of the earth, and the parameters of 

the pendulum are so chosen that in the position of relative equilibrium 

its dynamic axis of symmetry coincides with the direction to the center 

of the earth. 

Paper [l ] establishes the following conditions to be satisfied by a 

heavy rigid body with an axis of dynamic symmetry and so fixed at one 

of the points along this axis (pendulum) that its axis of symmetry co- 

incides with the direction to the center of the earth for arbitrary 

motions of the point of support on the surface of the earth. 

1. The reduced length of the pendulum equals the radius of the earth: 

A -= Rb (0.1) 
ma 

Condition (0.1) is the well-known Schuler condition 12 I. 

2. One of these two requirements is satisfied: either the projection 

of the absolute angular velocity of the pendulum on the direction to the 

center of the earth (in the position of relative equilibrium, coinciding 

with the axis of dynamic symmetry of the pendulum) at the instant of the 

beginning of motion oz (0) = 0: or the moment of inertia of the pendulum 

with respect to its ax s P of dynamic symmetry C = 0. 

If conditions 1 and 2 are satisfied, the axis of dynamic symmetry of 

the pendulum will always coincide with the direction to the center of the 

earth, provided the two were coincident at the instant of the beginning of 

mot ion. 
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This paper considers small vibrations of the axis 
of the pendulum about the direction to the center of 

of dynamic symmetry 
the earth, for the 

case when, at the instant of the beginning of motion. the axis of dynamic 
symmetry does not coincide with the direction to the center of the earth. 
The study of these vibrations permits us to judge the degree of stability 
of the position of relative equilibrium found in paper [ 11. Initially, 
just as in 11 I, the point of support of the pendulum is assumed to move 

on the surface of the earth, which is taken to be a sphere, and the 

gravity of the earth is assumed to form a central field. Later (Section 

4), the case of arbitrary motion of the point of support in the neighbor- 

hood of the surface of the earth is considered, and the earth’s gravity 

field is taken to be non-central; in this case the compensating moments 

which must be applied to the pendulumcin addition to conditions 1 and 2) 

for a position of relative equilibrium to exist, are determined. 

1. We introduce the following right-handed rectangular systems of co- 
ordinates: O’& *(*, the origin 0’ of which coincides (Fig. 11 with the 
point of support of the pendulum, and which moves arbitrarily on a fixed 
sphere S of radius R,, which is concentric to the earth’s surface; the 
orientation of the axis remains unchanged with respect to the fixed stars. 
‘lhe system of coordinates O’t*q*<* thus moves in forward motion with 
respect to fixed stars. 

lhe system ~xOyOzO is connected with the pendulum (Fig. 2) in its 
undisturbed motion in the position of relative equilibrium; the axis O’z, 
of this system of coordinates coincides with the axis of dynamic synvsetry 
of the pendulum, and is directed from the center along the radius of the 
earth; the axis O’x, and O’y, lie in the tangential plane to the sphere 
S and therefore also to the earth. lhe system O’nOyOzO is thus lkboux’s 
trihedron on the surface of the earth, connected with the point 0’ 

‘lhe system O’XYZ is connected with the body of the pendulum (Fig. 21 
in its disturbed motion about the position of relative equilibrium; the 
location of the system of coordinates O’xyz with respect to the system 
O’x,,yOz,, is determined by two angles a and @ (a and p are small) in 
accordance with the table of direction cosines*: 

=a Yo IO 

x i 0 --(3 

Y 0 1 a 

L P -a I 

(I.11 

l The disturbed position of the pendulum is here determined by two 

angles, since we are interested in the motion (deviation from the 

direction to the center of the earth) of the axis of dynamic symmetry 

of the pendulum. 
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Fig. 1. 

‘Ihe axis O’z is the axis of dynamic synvaetry of the pendulum, and the 

center of gravity c of the pendulum has the coordinates 

zc=yc=o, 2,=-a (J.2) 

‘Ihe axes of the system of coordinates O’xyz are directed along the 

principal axes of the ellipsoid of inertia of the pendulum, which is an 

ellipsoid of rotation; therefore 

I,, = I,, = I,, = 0, Ix, = I,, = A, I,, = c (1.3) 

2. We form the equations of motion of the pendulum with respect to the 

system of coordinates O’[*T,J*(* in projections on axes O’xyz; to this end 

we use Eirler’s equations, which in our case have the form: 

Ado, / dt + (C - A) oyor = 44, 

Ado, / dt - (C - A) o,oz = M, 

Cdo, / dt = M, (2.1) 

Fig. 2. 
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If o*o, aye, Or0 are the projections of the absolute angular velocity 

of the system of coordinates O’x,y z. on its axes, then, taking (1.1) 

into consideration, we have the fo P lowing expressions for the projections 

of the absolute angular velocity of the pendulun on the axes xyz fixed 

on it: 

To calculate the moments Mz , My, Mz we note that in the present case 

they are composed of moments due to the gravity of the earth and to the 

inertia forces produced by the motion of the system of coordinates 

~z“q’5’f in which the equations of motion of the pendulum are formulated. 

Asswning the attraction of the elementary masses of the pendulum due to 

earth, to be reduced to a single force F directed along the radius of the 

earth to its center* and having the magnitude F = mg,, where m is the 

mass of the pendulum, and go is the gravitational force of attraction by 

the earth on a unit mass placed on its surface, and also taking into con- 

sideration that the projections of the absolute velocity of IkAoux’s 

trihedron O’~oyozo on its axes** are 

% = Roq,,, vu, = - Rowr,, vz, = 0 (2.3) 

and taking into account (1.2) and (1.31, we obtain, 

M, = - magoa + maR, (2 - wvpz,) + muRo (& + o:,) a 
(2.4) 

MV = - mwop + maRo (2 + Q,%) + maRo (d, + &) p 

M,=O 

Substituting the relationships (2.2) and (2.4) into (2.1), and 

omitting second-order terms, the equations of motion, after an appropriate 

collection of terms, may be written down as follows: 

(A - maRo) (2 - fh~z, + 4.0: ) + Co,, b-h, - f4.a + ox,B) + 

+ Cw, (f + oz,a ) + A zf + (mug, - maRoot, - A&) a = 

l Special cases of the plane problem of small vibrations of a physical 

pendulum, taking into account the resultinp moment of graVitY forces. 

are considered in parers [ 3.4 1 . 

l * The center of the earth is assumed to be a fixed point. 
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It follows from the third equation, (2.51, that 

C (% - ou.a + 0.Q) = C (oz. - ov,a + ox&) Jbo = CH = const 

Taking this into account, the first two equations (2.51 take on the 

form: 

(A - maR,) (f$ - qez. + &a + CR .q,, t $ + o,,a ) c J +- 

da \ 
-I- A $ + (mq, - maRow:, - A$,) a = A (G.u,+, + -$I p + 2Ao,, s 

(A - maRd ( 
dt%+ o,.w,.+~:,~)-CH(o,,+dda -ozj)+ 

•k A $ + (mug, - maR,o~, - A&,) fi = A(o,o,, - 2) a - ~Au,, 2 (2.6) 

From (2.6) it immediately follows that the equations of motion have 

the trivial solution a = /3 P 0, that is the assumption regarding the 

relative equilibrium indicated above exists only when 

A = maR,,, CH=O 

It is easily seen that the condition H= 0 is equivalent to the second 

condition 2O : ozo = 0 when t = 0. 

From (2.61, for C = 0 and A = maR, we obtain 

(2.71 

where oo2 = go/R,. 

ForH= 0 andA= maR,, omitting second-order quantities, we have 
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(24 

Equations (2.7) and (2.8) d escribe the motion of the trihedron Q’xyz 

with respect to the trihedron O’x,y,z 

pendulum, which satisfies conditions P 
, that is small vibrations of the 

and 2 in the vicinity of the 

position of relative equilibrium. 

3. It is easily seen that equations (2.7) are invariant with respect 
to the transformation 

a’ = a cos E + p sin E 
p’ = - asinE +/~COSE (3.1) 

In passing from variables a and p to the variables a’ and /3’, o 

OYO and OZO must be correspondingly changed in the coefficients (2. x1) ) to 

I , 
% = wxocos~ + ova sin E, wy, =-wx~sinE+wU,cos~, w;,=w,,+$- (3.2) 

If we put dr/dt = - wzo, then equations (2.7) are transformed to 

equations (2.8); in this case, small vibrations are considered with 

respect to the trihedron O’~~‘y~‘t~, which does not rotate about the axis 

O’zO (not rotating with respect to the azimuth, azimuthally free). ‘Ihus 

we may subsequently consider only the system of equations (2.8). 

The study of a large class of small vibrations of equipment, which 

determine the vertical on a platform moving on the surface of the earth, 

can be reduced to equations (2.7) and (2.8); for example, if we put 

0 = 0 or w = 0, then the equations of small vibrations of an ideal 

g$o-horizon’kmpass are reducible to system (2.7) [ 5 1 . 

‘Ihe study of the properties of solutions of equations (2.7) and (2.8), 

particularly of the divergence limits of the solution with respect to the 
initial conditions (“excitation” of pendulum), is thus of a certain 

practical interest. 

‘lhe systems of equations (2.7) and (2.8) are, in general, systems with 

variable coefficients. Chly for special choices of Darboux’s trihedron 

~Xo'Yo'Zo, and the law of motion of the point of support of the pendulum 

on the surface of the earth, may these equations be reduced to equations 

with constant coefficients. 

For example, if the axis 0’~~’ is directed eastward along the parallel 

and the axis O’y, ’ northward along the meridian, and the motion of the 
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point of support is along a constant latitude $ with constant velocity 

uo’ then all coefficients in system (2.7) will be constant. In this case 

where u is the angular velocity of rotation of earth. 

If the motion of the point of support is along a great circle of the 

sphere S with velocity V, then by placing the axes 0’~~’ and 0’~~ into 

the plane of this circle, from systems (2.7) or (2.8) we obtain 

dsa’ 
-JiZ-+ wo2a’ =.O, 

It is interesting to note that in this case the restoring moment with 

respect to the angle a does not depend on the velocity of motion of the 

point of support. 

For the case u = vO = const, the solution of (3.3) is given by harmonic 

oscillations with amplitudes to be determined from initial conditions. 

Otherwise, it is possible for parametric resonance to increase the ampli- 

tude of the angle fl’. 

To estimate the limits of possible divergence of solutions of the 

system of equations (2.71 or (2.8), with respect to initial conditions 

for finite time interval IO, 7’ 1 for the general case of motion of the 

point of support, reconstruct the solution of the system (2.8) by the 

method of successive approximations. We determine the relationship between 

the n and (n - 1) approximations as 

The zero approximation may be taken as a solution of equations* 

Taking for simplicity 

(3.4) 

- 
l In paper [5 f this zero approximation was obtained by complex sub- 

stitutions from a system which may be reduced to (2.8). 
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we obtain from (3.4) 
: 

The convergence and uniqueness of the solution determined by approxi- 

mations (3.51 for bounded and continuous orO, o ,.O are obvious 1% 1. 

by 
It is easy to construct maximum estimates of the solution determined 

approximations (3.5) for a time interval [ 0, T I . 

Lfzt 

Then it follows from (3.5) that + 

Hence 

(3.6) 

An analogous estimate is obtained for 1 fi ( . 

‘Ihe expression (3.6) may be used to estimate the divergence of a and 

6 in time with respect to their initial values; if the foxm of the func- 

tions ox0 and oyO is not knorm. In the opposite case, to sharpen the 
estimates, it is better to integrate the approximations (3.5) directly. 

For possible velocities II of the point of support on the surface of the 

earth 

.& < (v + uflo)* 
ia0 K,VgoHo -=G1 (3.7) 

and thus the approximations (3.5) converge rather rapidly. It is sufficient 

to use the second approximation for this estimate. 

4. Let us consider the case of arbitrary motion of the point of support 

of the pendulum, close to the surface of the earth, and let us take into 

l Strictly speaking, the estimate is valid for R( 1 + l/2)/~+ > T > nl/ q, 
where 1 is an integer; for T >> 277/% this condition may be neglected. 

It may also be omitted if the interval of integration [ 0, T 1 Is broken 

up into portions equal to n/200. 
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account that the gravity field of the earth is not central. (Ihe vicinity 

of motion to the surface of the earth has to be understood in the sense 

that the acceleration of the earth’s gravity may be assumed to be con- 

stant in magnitude. In this case ox, or, oli as before, are determined by 

formulas (2.2) in equation (2.1), while for the velocities and the moments 

we have 

ux. = Ruv,, rll, = -R+., 
dR 

h, = d-t (4.1) 

M, = - mag,,‘a + ma 
L ( 

R 2 - q,,cor,) - 2 $ c+,] + 

+ maR (0: + q,:) a + Mg’ + M!$ 

M, = - mag,‘p + ma ) + 2 t; %] + 

+ maR (02 + 03 p + Ml” + kt’ (4.2) 

where M(l), M(l) d enote mclments due to the horizontal component of the 

force of gravity, while M(*), M(2) denote additional compensating moments 

applied to the pendulum. &’ is’the radial acceleration of earth’s gravity 

at a distance R from its center. 

To determine the moments M(l), M(l), in addition to the systems of 

coordinates already considered we iitroduce Darboux’s trihedron 0’6~6 

is directed east along the parallel and the axis 0’7 northward along the 

meridian. Then, assuming the earth to be an ellipsoid of revolution [ 7 1 , 

we may write 

M!” = - ab sin 29 cos (qy,) 

MI” = - ab sin 2q1 cos (qzO) (4.3) 

Here 4 is the geographic latitude of the point 0’. 

b 
= e2g, - u2d 

2 

where d and e are respectively the minor semi-axis and the Krasovskii 

eccentricity of earth’s ellipsoid. 

For 

c = 0, A = maR (A = const) (4.4) 

From (2.1), (2.2), (4.2) and (4.3) we obtain the equations of small 

oscillations in the case considered: 
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Equations (4.5) have trivial solutions if the coqensating moments 

Q), $2) are formed in accordance with the equations 

Jf(‘) = ma x (-2 yF ox0 + b sin 2~ cos (77~~)) 

Mt’ = ma (2 ‘$q,, + b sin 2~ cos (qq,)) 
(4.6) 

that is, the axis of dynamic symnetry of the pendulum, if the earth’s 

gravitational field is considered non-central and if the vertical com- 

ponents of the velocity of the platform are taken into account, will in 

that case be in a position of relative equilibrium coincident with the 

direction to the center of the earth only if the moments M(z2) and M(*) 

are applied to the pendulum along the axes O’s and O’y, which are dzter- 

mined by equations (4.6). 

If the corrective moments are applied externally to the pendulum, then 

the equations of small oscillations will have the form: 

where A, and AS are the non-compensating remainders of the disturbing 

moments. 

Of particular interest is the case when the compensating moments 
M(2), M(2) are formed in making use of the coordinates of the instanta- 

n&w l&zation of the object, which may be given by the pendulum itself. 

In this case, also taking into account a possible error in satisfying 
the second condition (4.4) in the amount AR and a possible error 

AdR /dt in d R /d t for the formation of compensating moments, and also 
omitting small changes in the corrections due to the gravitational field 
of the earth being non-central, by introducing the change of variables 
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(3.1) and putting dr/dt = - wzo for small oscillations we obtain the 

following equations : 

where oiO $0 %I are determined by formulas (3.2). 

In studying system (4.8) we may assume gO’/R = g,/R, = const. To esti- 

mate the possible divergence of the solutions of the homogeneous system 

(4.8) with respect to initial conditions, we may then use relationships 

(3.5) or (3.6): 

support 

and 

Owing to the fact that for the usual velocities of the point of 

of the pendulum this divergence is small, in accordance with (3.6) 

(3.7), to estimate the influence of right-hand sides in equations 

may consider the equations 

(4.8) we 

(4.9) 

In conclusion we remark that if the pendulunl is not suL?jected to 

moments which compensate the disturbing effect of the horizontal component 

of the earth’s gravity, then, since the change of this component in time 

Woo is small, the pendulum, for usual velocities of motion of the 

point of support, will be determined with great accuracy as being along 

the force of attraction of the earth. 
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